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A B S T R A C T

Despite all the scientific and technological developments in the past one hundred years, biologic issues such as
pandemics are a constant threat to society. While one of the aspects of a pandemic is the loss of human life, the
outbreak has multi-dimensional impacts across regional and global societies. In this paper, a comparative re-
gressive and neural network model is developed to analyze the impacts of COVID-19 (coronavirus) on the
electricity and petroleum demand in China. The environmental analysis shows that the epidemic severeness
significantly affects the electricity and the petroleum demand, both directly and indirectly. The outputs of the
model stated that the elasticity of petroleum and electricity demand toward the population of the infected people
is −0.1% and −0.65%, respectively. The mentioned results show that pandemic status has a significant impact
on energy demand, and also its impacts can be tracked into every corner of human society.

1. Introduction

The first and foremost aspect of a pandemic is human suffering and
the loss of life, as evidenced by the coronavirus pandemic already
having six million global confirmed cases of infection and closing on
400,000 confirm deaths (June 1, 2020) [1]. However, this type of
epidemic can have significant multi-dimensional effects, including
economic and environmental consequences [2,3]. While the link be-
tween the effects of the pandemic and the economy may vary, the se-
vere rate of infection of COVID-19 has placed 30% of the global po-
pulation in lockdown, with country-specific stay-at-home orders [4–6].
This has already shown severe economic impacts, with ~80% of the
international workforce having their workplace closed, and an expected
recession of 0.3% (the worst since the Great Depression) [7].

When looking at the literature, the economic impact of pandemics
(and epidemics) has been analyzed by estimating the cost of deaths,
such as with the severe global influenza (such as the 1918 epidemic)
reaching 500 billion USD a year or about 0.6% of global GDP [8].
Noting, low-middle income countries tend to be strongly affected
(1.6%), in comparison to high-income countries (0.3%). The World
Health Organization (WHO) and World Bank joint report, on the other
hand, estimated that the impact of such an epidemic is even more
significant, with up to 2.2–4.8 percent of global GDP (the 3 trillion
USD) [9]. While, another article from the IMF further adds that

vulnerable populations, especially the poor, are likely to suffer because
they may have less access to health care and less protection in facing
the financial disaster [10].

At the regional level, a World Bank report estimates that the Ebola
epidemic in Guinea, Liberia, and Sierra Leone canceled many of the
economic gains of these countries in the years prior to the epidemic,
which had been categorized as their fastest-growing economic period
[11]. Noting, a WHO report further explains that these types of out-
breaks have a significant impact in the private sector, posing a threat to
food security due to reduced agricultural production and cross-border
trade with restrictions on movement, goods, and services.

China is an interesting case study, as it 1) was the first country
suffering from COVID-19 resulting in the most longitudinal dataset
available [12], 2) is the second-largest economy in the world, and fi-
nally 3) has the highest energy consumption in the world, and si-
multaneously the greatest growth in installation of wind and solar,
respectively (measured in GW) [13]. This increase in energy con-
sumption is a necessity, in order to support a growing domestic in-
dustrial market and a concurrently increasing export of goods, due to
decades of globalization [14]. Despite a constant increase in production
and export of especially crude steel [15], China is committed to redu-
cing its CO2 intensity by 40–45% in 2020 and 60–65% in 2030 com-
pared to the 2005 levels [14]. However, the CO2 emissions of China are
experiencing continuous annual growth. Optimists might have hoped

https://doi.org/10.1016/j.erss.2020.101654
Received 24 March 2020; Received in revised form 5 June 2020; Accepted 10 June 2020

⁎ Corresponding author.
E-mail address: nima1376@aut.ac.ir (N. Norouzi).

Energy Research & Social Science 68 (2020) 101654

Available online 20 June 2020
2214-6296/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/22146296
https://www.elsevier.com/locate/erss
https://doi.org/10.1016/j.erss.2020.101654
https://doi.org/10.1016/j.erss.2020.101654
mailto:nima1376@aut.ac.ir
https://doi.org/10.1016/j.erss.2020.101654
http://crossmark.crossref.org/dialog/?doi=10.1016/j.erss.2020.101654&domain=pdf


for China reaching the top of the Kuznet's curve as presented in a paper
published in 2019 by Chen et al. [16], in a couple of years, where a
turning point in pollution occurs in the transition between a nation's
industrial and post-industrial economic stage. However, an emergent
question is whether COVID-19 will push China, and potentially other
countries, backward in its economic maturing, and thereby prolong the
transition period towards reduced environmental pollution, or if
COVID-19 might reduce the increasing foreign trade and immediately
force China into the next stage.

Although the current pandemic is still ongoing, in the short term,
the energy and electricity systems have been significantly affected by
COVID-19 with changes not only in the total levels of consumption and
production but, perhaps more importantly, on the usage patterns [17].
In the case of the oil industry, the effect has been in the reduced usage
for transportation with global air traffic coming to a halt, as well as
passenger and goods transport [18]. Such trends will undoubtedly in-
form about future energy policies, and not only in China but globally in
the period post-COVID-19.

It is on this light of the coronavirus pandemic that this paper aims to
do quantitative analysis, through an auto-regressive elasticity and
neural network-based sensitivity analysis, to determine the importance
and vulnerability of different economic sectors with a specific focus on
the petroleum and electricity demand [7].

1.1 Energy demand and neural networks

With increasing energy demands and fluctuations, modeling, and
forecasting of energy gain increasing importance. The mining and
consumption of fossil fuels directly influence phenomena such as air
pollution in metropolitan areas. In the meantime, the energy industry is
a sophisticated yet essential part of the economic growth in every
country. Therefore, providing an appropriate model that can predict
changes in energy consumption in the economic sectors seems to be
necessary. Different methods and tools are used to analyze energy de-
mand and determine the effect of various factors. Most of the researches
conducted was to estimate petroleum and electricity demand through
linear function and econometric methods [8]. However, since the
variables affecting energy carrier demand are volatile over the studied
time series period, nonlinear methods can provide better estimates for
energy consumption [9].

Completely nonlinear trends such as oil and electricity consumption
are highly complex and are influenced by various factors, each of which
exhibiting complicated behavior. For this reason, modeling through the
analysis method is practically impossible for these phenomena. For
modeling such phenomena, traditionally, statistical techniques and re-
gression modeling, and recently, methods based on artificial in-
telligence, such as Artificial Neural Networks (ANNs) or nonlinear
Regression and other hybrid models, are used. The advantage of using
neural networks is in their ability to identify and determine the re-
lationship between input and output variables without the need to ac-
quire a comprehensive knowledge of phenomenal physics [10], and the
advantage of the regression is its simplicity and more precise results
which can be implemented in the structural relations.

Several studies have reported better efficiency and lower error of
the neural networks in comparison with traditional methods [19–22].
In this study, a multi-layer feedforward perceptron neural network is
used with a hidden layer to provide an oil and electricity consumption
model in the economic sectors of China, such as industry, residential,
agriculture, services (please refer to the methodology section for a
complete breakdown of variables). Due to the increasing growth of
infections in world and challenges in providing energy demand as well
as the significant contribution of the oil and electricity sector in the
economic status of countries, analysis of oil and electricity consumption
in the economic sectors and evaluation of factors affecting it have
caught the attention of many researchers. Many researchers estimated,
forecasted, and investigated energy demand in economic sectors of

China using models with linear equations, quadratic and exponential
equations, and based on conventional criteria.

Artificial neural networks are presented as one of the most used
modeling and predictive tools of energy consumption and are compared
with other modeling techniques [23,24]. A paper published in 2015 has
predicted Thailand's energy demand in the transportation sector
through artificial neural networks and nonlinear regression models for
the next twenty years [25]. Another reference from 2003 has modeled
the energy consumption of the transportation sector in Jordan and
predicted it through the neuro-fuzzy neural network [26]. Energy de-
mand is that South Korea has been modeled and predicted using arti-
ficial neural networks with a similar structure to the method presented
in this study [25].

The ability of artificial neural networks to estimate the complex
nonlinear functions has made them a useful tool for complex modeling
phenomena. In recent years neural networks have been applied for
various energy forecasting studies, ranging from forecasting the fluc-
tuation of wind power in various timescales [27], energy consumption
in buildings [28], to prices, and supply and demand in energy systems
[29,30].

1.2 The present study

This paper aims to investigate the relationship between the mac-
roeconomic parameters (especially the petroleum and electricity de-
mand) in the time of a pandemic situation. The first global pandemic in
the 21st century. It uses an auto-regressive elasticity and neural net-
work-based sensitivity analysis to determine the structural correlative
coefficients, which governs the relationship between the specified
parameters. These correlative coefficients are being used to model the
response of the economy to the pandemic situation. This model is the
main contribution of this paper to the field of energy and economic
decision-making body in the time of the pandemic outbreak.

Additionally, the novelty of this paper lies in the use of descriptive
variables of the model that are extensively linked to the novel COVID-
19 pandemic. Exploring the energy consumption sensitivity from vari-
ables such as GDP and Labour performance index is a novel aspect in
literature [9,10]. The timeliness and data resolution of this study is also
unique; as previous case studies on energy demand analysis in China,
the data are measured on an annual basis, whereas the time interval in
this paper is more detailed being analyzed monthly. This issue, besides
the enlargement of the data, can lead to the improvement of the effi-
ciency of the neural network and regression. The use of an energy
consumption neural network model in China for sensitivity analysis is
also a novel attribute of this paper, as it is implemented to estimate the
impact of the novel coronavirus pandemic on the electricity and oil
demand.

Overall, this paper contributes to decision-makers to better predict
the responses of the demand and supply side of the markets, guiding the
management of the impacts of economic stagnation during and after a
pandemic. The suggested guidelines of this study also aim to support
future studies in the field of energy policy, when developing adaptive
econometric models for severe and multi-dimensional social problems.

2. Methodology

Investigating the structural relationships between core parameters
of the economy and their direct or indirect impacts on petroleum and
electricity demand is the main target of this paper. However, many
classical methods are introduced by the literature for the analysis of the
structural correlations [31–36], which make it difficult the choice de-
pending on the period, problem, and field of study. This study in-
vestigates the current novel coronavirus outbreak, where there is a clear
and distinct shift in global trends has occurred in early 2020. This trend
shift makes most of the classical methods unsuitable for the analysis,
considering the vulnerabilities of the classical methods. Therefore, this
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study proposes two new hybrid methods for model construction: a)
Auto-Regressive-time series hybrid and b) the artificial neural network
sensitivity analysis hybrid to manage and overcome the obstacles of the
problem modeling occurred because of the trend shift. After the method
selection, the length of the investigation period is the most important
problem that must be dealt with. As it was mentioned, trend shift
phenomena caused by the pandemic makes all of the models developed
using the historical trends useless and inaccurate. Thus, the long –term
trend analysis decreases the inaccuracy of the model, and short time
periods increase the uncertainty of the model because of the smaller
data sets for model training and test process. Therefore, to overcome
the trend-shift and lack of enough data problems, the authors trained
the model with the daily data of Jan 2019 to Jan 2020 and tested the
model using the data of the Feb and March 2020 for accounting for
contextual factors such as seasonality.

2.1. Method selection

Accurate prediction of economic outcomes is integral to successful
decision making. It can lead to better government policies and plan-
ning, although economic forecasts and foresight models might prove
valuable, its a challenge for econometric researchers, who must develop
the framework of an accurate model [8]. The accuracy of the econo-
metric methods varies with different problems, and although these
models are useful in illustrating the future of the different parameters
and their trends, they can be biased and lead to systematic errors [9].

In this matter, the models can assist in processing a large number of
parameters and filling the gap between risk factors and estimations.
Different models have been developed in the field of machine learning
and statistics that can be used for predicting economic and social
complexities. Regressions were developed by the statistics community,
whereas others such as decision trees were developed by the machine-
learning community [10]. The regression, which is a statistical method,
is widely used in the economic and social fields of study, and the
methodology is mature and well-established, and coefficients can have
intuitive economic and social interpretations. The decision tree method
is a graphical method that contains the rules for predicting the target
variables. Neural network and Bayesian networks are nature-based
models consisting of nodes and interconnections [11]. Although they
are similar in type, they are intrinsically different in the term of the
process and mathematical model. The Bayesian model's interconnec-
tions (arcs) illustrate the conditional dependence relationships between
the variables as defined with probability theory, and each node of the
graph represents the variable of interest. In the neural network (ANN)
arcs and nodes are not representing a predefined relationship, and the
values are discovered during the training analysis, and the interpreta-
tions are made according to the model defined relationships [12]. The
ANN is more complicated, with more nodes and a more comprehensive
process and relationships. This complexity makes ANN able to process
any large scale data of multivariable clusters and derive the most ac-
curate model according to that data. Considering all the mentioned
facts and reviewing the literature, the regression and ANN are the most
suitable methods for the data processing of this paper because they
enjoy the most widespread us, relatively easy to build, fast respond, and
more accurate with the excellent predictive ability [13].

As it is shown in Fig. 1, the methodology of this paper uses the ANN
and regression method to develop a structural model to interpret the
pandemic impact on the economic status of China. The process begins
with environmental scanning to determine the possible effective driving
variables, then the main variables are being selected, and the data is
gathered for them, and then the data is processed and analyzed through
two different methods to provide us with an accurate comparative
model [37].

2.2. Data

In recent years, the use of cointegration analysis to estimate energy
demand patterns has grown widely [8,22]. Cointegration analysis is
commonly used to test the long-term and short-term characteristics of
energy demand [8]. One method of cointegration analysis that has been
widely used in recent years is the autoregressive approach with dis-
tributed interruptions, which yields unbiased estimates of long-run
coefficients. The variables used to model the coronavirus effect on
economic status, and energy demand is summarized in Table 1 and 2
[37]:

2.3. Regressive model

In this paper, the conventional least squares, fully adjusted least
squares, cointegration analysis, and ARDL approach was used to esti-
mate China's energy and electricity demand pattern in the time of cri-
tical epidemic or pandemic conditions. Two tests of Engel-Granger and
Johansson-Yuselius were used for the coagulation test [23]. The least-
squares method has been used to estimate the simple energy demand
pattern by Stoke and Watson [46]. Halisiagoglu and Bakertasch's model
also used the two-step Engel-Granger method to model the relationship
between energy, economic activity, and price [47].

The model introduced by Shane and Boys also argues that time
series must all be in the form of Eqs. (1) and (2) to use this approach
effectively. The suggested pattern is shown below:

For Oil Demand

= + +

+ + +

+ + + +

LnDemand B GDP B LnDemand B LnEpidemic

B LnPopulation B LnPMI B

LnExports B LnFDI B LnStocks B LnP B

10
oil electricity

infected

industry

1 2 3

4 5 6

7 8 9 10

(1)

For Electricity demand

= + +

+ + +

+ + +
+

LnDemand B LnDemand B LnGDP B LnEpidemic

B LnPopulation B LnPMI B

LnExports B LnFDI B LnStocks B
LnP B

10
electricity oil

infected

industry

1 2 3

4 5 6

7 8 9

10 (2)

where Bi is the coefficient value, the dependent variable, and the in-
terrupt operator, also, it is the vector of deterministic (non-random)
variables such as source width, trend variable, virtual variables, or
exogenous variables with fixed intervals. The number of interrupts used
for the dependent variable is the number of interrupts used for the
independent variables. The number of optimal interrupts for each of the
explanatory variables can be determined using one of the Acaic,
Schwartz-Bizin, and Hanan-Quinn criteria. Thus, the best selected ANN
specifications for the ARDL model is given in Table 4 [48].

In recent years, the ARDL approach has been widely used in energy
demand estimation. In this approach, energy consumption is explained
by its interruption and the current and interrupting values of in-
dependent variables such as price and income. In the traditional ARDL
approach, false regression may be obtained when the variables are in-
variant unless the variables are cumulative. Even if pattern variables
are included, there is concern that standard methods of statistical in-
ference are invalid [49]. Shane's research in 1999, showed that even
when the model variables are unmanageable, the standard hypothesis
test can be used by modifying the traditional ARDL approach [50–52].
In this approach, both long-run and short-run coefficients can be esti-
mated following OLS, and valid statistical inferences can be made using
asymptotic standard distribution theory [51]. The only point needed to
validate these is the existence of a long-run relationship or a coex-
istence relationship between variables. Therefore, even if the variables
are nameless, the ARDL approach can be valid, provided that there the
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Fig. 1. The schematics of the methodology of this study.

Table 1
The summary of the variables used in the model.

Text sign Variable Sign Unit Reference Description

X1 GDP Growth GDP [%] World Bank [38] The normalized daily economic growth rate in China.
X2 Oil Demand Demand_oil Million

Barrel
IEA [39] The daily oil demand for China

X3 Electricity Demand Demand_electricity TWh IEA [39] The daily oil electricity of China
X4 Epidemic status Epidemic – Author (WHO) [40] A control index showing severeness* of the epidemic
X5 Infected people Population_infected People WHO [40] The daily cumulative infected people in China.
X6 Manufacturing PMI PMI – Trading economics [41] The daily Caixin China General Manufacturing PMI showing the

manufacturing productivity in China
X7 Export Income Exports USD HML Trading economics [42] The daily export income of China
X8 Foreign Direct Investment FDI B USD Trading economics [43] The cumulative daily foreign direct investment entered in China
X9 Industrial Productivity P_industry – Trading economics [44] Daily industrial productivity in China
X10 Stocks Value Stocks – Shanghai Composite Stock

Market [45]
The China Shanghai Composite Stock Market Index.

* Note: The severeness variable is an artificial parameter which shows the severeness of the situation, measured by the daily death cases and the worst WHO
scenario of maximum daily death cases.

Table 2
The data description.

Parameter Mean Min Max Var. Std. Dev. Amount

X1 583.5630769 474.33 677.00 3324.853106 55.39941494 365
X2 10.32307692 7.9000 11.500 0.861923077 0.891976066 365
X3 1.223076923 −1.8000 1.6000 0.831923077 0.876315579 365
X4 0.142307692 0.0000 1.0000 0.088269231 0.285445774 365
X5 5316.153846 0.0000 60,000 276134225.6 15965.37289 365
X6 48.69230769 35.700 50.500 15.40243590 3.770627685 365
X7 2121.538462 1850.0 2390.0 25897.43590 154.6134711 365
X8 694.6815385 126.80 1367.0 170356.0294 396.5497692 365
X9 5.238461538 3.8000 8.6000 1.650897436 1.234465603 365
X10 2943.846154 2650.0 3300.0 33275.64103 175.2597396 365
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fully modified least squares method (FMOLS) is a semi-parametric ap-
proach that is used to estimate single cohesive relationships with a
combination of variables in Eq. (1) [50]. This method was developed by
Phillips and Hansen in 1990. Also, research done by Park and Phillips in
1988 and by Hansen and Phillips in 1990 has shown that this method
has advantages that distinguish it from the conventional least-squares
method [53]. These include the following:

• Supercomputing estimates
• Asymptotically, the estimates are not biased
• Having an asymptotic normal distribution

Providing a modified standard deviation that allows for statistical
inferences, and thus, the t-test for long-run coefficients is valid [54].
Moreover, to reach higher accuracy in the modeling, a hybrid neural
network method is also being used to the results being compared, and a
more accurate model be developed [55].

2.4. Hybrid regressive model

The structure of neural networks is generally composed of a certain
number of neurons in layers with different configurations, and strings of
communication, which are called synapses in the nervous system lit-
erature, that provide the contact between neurons [56]. Each synapse
has value as the weight of the synapse, which, according to its weight,
transmits the output of a neuron to the input of another neuron [57].

ANNs have been developed for a wide range of applications and
issues. The most common form of the artificial neural networks to ap-
proximate complicated functions and modeling phenomena with such
behavior is a type of feedforward neural network that is called a multi-
layered perceptron with a nonlinear activation function [58]. This type
of neural network provided the number of the neurons of the middle
layer, is capable of approximating any continuous function with arbi-
trary precision [53]. The structure of this network is composed of an
input layer, an output layer, and some hidden layers. Each of the
neurons of each layer is connected to all the neurons of the next layer,
such that the output of each neuron is multiplied by the weight of each
output synapse connected to it and is transferred to the next layer. Also,
at the entrance of neurons, signals received are first added up together.
Then they enter the activation function of the neuron and specify its
output [52]. In this type of network, nonlinear continuous function and
bounded from above and bounded from below is used as the activation
function. Considering that the number of layers has no effect on this
ability of the network, and only the middle layer is sufficient, the
perceptron neural network with one hidden layer is used in this model
[59].

After selecting the appropriate network type for the desired model,

the preparation of the neural networks often needs the determination of
the values of its synapse weights according to the studied data. The
search process to find optimal weights for the network is called the
“training phase.” Typically, a portion of the available data is used for
network training, and the other is used for testing the efficiency of the
neural network. One of the most widely used methods of training
feedforward networks is the “error backpropagation algorithm”
[58,60].

The initial values of the synaptic weights are randomly selected
between −1 and 1. Hyperbolic tangent has been selected for the acti-
vation function of the network. In training the neural network, an ap-
propriate selection of the training coefficient is critical for achieving
optimal response. In training MLP neural networks, the training coef-
ficient of the different layers can be defined differently. The learning
coefficient of the output layer is usually selected lower than the other
layers to avoid fluctuations in the network around the optimal response.
Such an approach is also adopted in this model, and the training
coefficient for the last layer is selected equal to the half the coefficient
of the hidden layer. Parameters of the artificial neural network are
generally set in a trial and error way [56]. The number of the hidden
layer neurons was selected considering the complexity of the data and
by experts in a practical way, and the number of neurons was increased
according to the response of the network, as shown in Table 3. The final
values chosen for various parameters of the network are shown in
Table 4. The structure of the selected ANN is illustrated in Fig. 2.

Table A1 (see Appendix) provides instructions for the analysis
process and the meaning of each estimated model parameter for both
ANN and regressive models.

3. Results

Considering the economy and energy demand have a complex re-
lationship, a single linear model cannot model such dynamic, especially
in the trend shift periods. Therefore, a correlative regressive model is
needed to investigate all of the direct and indirect relationships be-
tween dozens of the main parameters deriving the system. Correlations
between the parameters are described using the Pearson coefficient,
and this amount is in the range of [−1, +1]. While −1 ≤ p ≤ 0 means
an inverse relation, and 0 ≤ p≤ + 1 means a direct relationship.
Table 5 below shows the results of the effect of each parameter and the
significance of this effect, noting the importance of the Epidemic status
in the world's economic well-being. The information provided in this
table is the output of the correlation analysis between the variables of
the model.

The pandemic outbreak affected economic parameters through de-
activating many industrial and economic units, which in turn affected
energy demand across many countries, including China; nothing is such
demand is significantly dependent on economic parameters.
Nonetheless, the impacts between demand and each parameter are not
homogeneous. Table 5 presents the elasticity of each economic para-
meter toward the pandemic, showing that PMI and GDP growth are
damaged more significantly by the COVID-19. Whereas all of the other
parameters, such as export income, foreign direct investment, and in-
dustrial productivity, are also affected but less significantly by the
pandemic outbreak. These, in turn, are directly or indirectly affecting
the energy demand and supply side. While the stock index is not di-
rectly affected by the COVID-19’s outbreak, it is significantly affected
by the decrease in the PMI and industrial productivity, thereby being
indirectly affected by the COVID-19.

According to the model outputs, the elasticity of each target para-
meter to the coronavirus is being calculated and reported in Table 6.
This shows that the novel coronavirus has an essential impact on the
economic and energy demand status of China, and likely other regions
of the world (if the region is has confirmed cases of infection).

The results here show that Industrial Productivity is being reduced
because of the disease, but the more significant impact is through

Table 3
Choosing the number of hidden nodes.

Number of hidden neurons Train set error (%) Test set error (%)

9 15.1 18.1
10 14.9 19.5
11 11.0 13.4
12 8.7 9.1
13 5.5 6.4
Average Error Percent (APE)

Table 4
The best selected ANN specifications.

Training rate 0.0075
The momentum coefficient 0.5
The number of hidden neurons 13
Activation Function Hyperbolic Tangent
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severeness, as a 1% increase in the severeness index causes a 10.57%
decrease in the productivity index. For the stocks index, also the se-
vereness index is the most important factor causing a 0.67% decrease in
the stock's value index. GDP growth is also being hit by the population
of the infected people, which a 1% increase causes a 1.12% decrease in
the GDP growth rate. The electricity demand is also decreasing by
0.65% when the population increase by 1%. However, the oil demand is
the second most sensitive to the severity index, which experiences a
0.9% decrease due to a 1% increase in the severeness index. Table A2
(see Appendix) shows the indirect impact of the coronavirus on the
other economic parameters by affecting the more critical parameters
that the main affected parameters have a significant effect on them.
Table A2 is only a graphical schematic of the driving variables in other
important variables, which are presented in this section to show that
there is an indirect relationship between the parameters and the pan-
demics. Table 6 presents the results of different correlative models
developed to investigate the structural model of Fig. 3. Diagrams are

shown in Table A2 clearly illustrate the indirect impacts of the different
parameters which don't have direct relationships with each other. Thus,
a more detailed schematics of the relationships (Fig. 3) is needed to
illustrate the structural model of the problem in this paper.

Fig. 3 shows the impact of each parameter of the model on the other
parameters. The coefficient shows the elasticity of each parameter to
the other parameters, and this figure clearly shows the direct and in-
direct impact of the coronavirus on the energy demand, especially oil
and electricity consumption in China.

Using the model, first, through conducting sensitivity analysis on
different variables, the amount of the influence and the way they affect
the change in the output of the model are investigated. Then, using
different scenarios, the amount of oil and electricity demand in the
industry and residential sectors of China will be predicted for the
coming months.

Changes in the output variable would be observable by modifying
the desired input and keeping other input variables constant to

Fig. 2. The structure of selected ANN.

Table 5
Pearson Correlation of the parameters.

Epidemic Infections Manufacturing PMI Exports FDI Industrial Productivity Stocks GDP growth

Epidemic 1 0.923 −0.844 −0.496 −0.366 −0.43 0.068 −0.873
Infections 0.923 1 −0.981 −0.563 −0.409 −0.377 −0.1 −0.988
Manufacturing PMI −0.844 −0.981 1 0.506 0.353 0.354 0.219 0.987
Exports −0.496 −0.563 0.506 1 0.917 0.36 0.025 0.519
FDI −0.366 −0.409 0.353 0.917 1 0.15 −0.112 0.353
Industrial Productivity −0.43 −0.377 0.354 0.36 0.15 1 0.484 0.336
Stocks 0.068 −0.1 0.219 0.025 −0.112 0.484 1 0.161
GDP growth −0.873 −0.988 0.987 0.519 0.353 0.336 0.161 1
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determine the output sensitivity toward different input variables. The
average ratio of the output changes to the changes in each input has
been mentioned.

=S F F/
/

F
(3)

The changes of the output variable have been observed to determine
the output sensitivity to different input variables, by applying changes
to the desired input and keeping other input variables constant, ac-
cording to the Eq. (3). The more significant changes of the output
variable concerning the changes of the input variable, and the more
consistent it is indifferent samples, the more effective the desired
variable on the output. Table 7 includes the ratio of the output changes
to the changes in different variables.

According to the main aims of this paper, investigating the trends of
oil and electricity demand are the main objectives of this research. The
driving parameters of a system must be analyzed to understand the
responses of the system to a phenomenon. Similarly, the oil and gas

Table 6
The elasticity of each parameter to the coronavirus epidemic severeness and the population of infected.

Population_infection Elasticity Severeness Elasticity t-parameter Sig.

Industrial Productivity −6.05 −10.67 −9.87 0.000
Stocks −0.18 −0.67 −0.001 0.000
GDP growth −1.12 −0.44 −21.546 0.000
Electricity Demand −0.65 −0.1 −2.232 0.04
Petroleum Demand −0.1 −0.9 −6.770 0.000

Fig. 3. the co-integrated relation between the model parameters and the elasticity of each parameter on the others (Pro. >95%).

Table 7
The ratio of the output changes to the changes of each variable.

Variable Description The Ratio of the

Changes (S F )
petroleum

The Ratio of the

Changes (S F )
electricity

GDP GDP Growth 0.3168 0.34848
Demand_oil Oil Demand – −0.9372
Demand_electricity Electricity Demand −0.852 –
Epidemic Epidemic status −0.5544 −0.60984
Population_infected Infected people −0.5346 −0.58806
PMI Manufacturing PMI 0.4356 0.47916
Exports Export Income 0.8118 0.89298
FDI Foreign Direct

Investment
−0.9504 −1.04544

P_industry Industrial
Productivity

0.3762 0.41382

Stocks Stocks Value −0.3564 −0.39204
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demand responses to the pandemic outbreak, the driving factors must
be investigated to model and predict the future of the target variables
(Oil and electricity demand). In this paper, ten driving factors (X1–X10)
are determined as the main thrusts of the objective parameters, and the
impacts of these parameters on the oil and electricity demand illustrate
the correlation between the parameters of the structural model. These
impacts (as it was mentioned in the methodology) are being estimated
using two methods of neural network and auto-regressive. In the auto-
regressive model, elasticity and Pearson relationships can be used for
the estimation, and in the artificial neural network, the sensitivity
analysis was put to this task. As it is formulated in the Eq. (3), the ratio
of change (SF) or the impact of each variable on the electricity and
petroleum demand is calculated. Briefly, the sensitivity index shows the
sensitivity or the dependence amount of the dependent variable toward
the independent parameters for example if the dependent variable's
sensitivity toward the parameter “A” be estimated 0.6% it means that
the 1% increase in the parameter A causes a 0.6% increase in the
amount of the dependent variable (Table 7).

4. Discussion

In this section, the economic situation of China and the economic
impacts of the COVID-19 is discussed to then elaborate with two sce-
narios to provide a broader view of the pandemic control strategies'
impacts on the economy and energy demand. In the end, the different
aspects of the energy demand side, as well as suitable policies to be
implemented to control the damages of the pandemic crisis, are pre-
sented, supported by other studies in the literature.

The COVID-19 outbreak is also expected to cause deeper impacts
than those during the SARS epidemic [22]. However, the damage is not
be limited to China [23]. Indeed, given that Wuhan – the center of the
crisis – is also one of the largest transport hubs in the country, the
impact has extended to national and international airlines, severely
affecting the tourist industry. Countries whose economies are depen-
dent on tourism (e.g., Greece, France, or Italy) are currently adjusting
their forecasts [24]. Many international technology companies or
component providers for such companies (e.g., Apple or Samsung) have
plants in damaged Chinese provinces, and the virus, along with pre-
ventive measures, damages international supply chains [25]. According
to S&P rating agency assumptions and estimates, COVID-19 could re-
duce the GDP growth rate of Wuhan by 20%, for the world by 0.3%
(ppt), for China with a total rate of 0.7 percent, for the Asia and the
Pacific 0.5 percent; and for the United States and Europe with 0.1–0.2
percent [26]. Internationally, the effects risk other industries supply
and value chains, as in the case of several car manufacturers, including
Fiat, Renault, or BMW [27].

Considering the locations with the biggest to-date outbreaks, such as
China, the United States, the UK, and mainland Europe it can be noticed
that the industrial and technological hubs are in more danger than
other places because of the vast trade communications and interna-
tional commodity transfer system [60]. These locations are also the
main demand sections of the energy (especially oil and electricity). In
the case of China, the outbreak in Wuhan, which is one of the leading
international terminals of the country and a hub of its economy, caused
a significant impact not only nationally but also on the global energy
market [61]. First, because of its direct impact on the energy demand
and decrease in the productivity of the industries, which causes large-
scale shutdowns. Second, its significant impact has indirect effects
through panic in the stocks and gold market, which forces the petro-
leum price to further fall because of the lack of a global program to
control the energy market (which is not the priority of most govern-
ments in the time of crisis) [62]. In recent years, China has grown to
account for about 50% of the world's oil demand, so when demand in
the country declined by 20–25% due to quarantine measures [63], oil
prices were damaged significantly.

Moreover, the infections across Middle East countries can damage

oil supply significantly due to the lesser productivity [64–68]. Not only
the shutdown industries but also the service and commercial sectors are
affected. This energy demand reduction in the service and commercial
sectors can be detected from the air pollution indexes, which is directly
dependent on the energy demand in the cities and businesses [69].

More specifically, when analyzing the impacts of the coronavirus in
relation to energy and electricity, this paper shows (see Table 7 above)
through the output of its model, that petroleum has a high sensitivity
toward electricity demand, export income, and foreign investment
variables. The sensitivity of the petroleum demand model towards the
population of the infected people, contrary to what is expected, is not
high when compared to the electricity demand. This issue, which is
consistent with the previous findings by Suganthi and Samuel and
Shariatzadeh, indicates the relatively low impact of the pandemic status
on residential electricity consumption since energy is an essential and
inelastic good [61]. Still, it can be much more significant in the in-
dustrial sector. The changes in the manufacturing index show that it has
a moderate impact on oil and electricity demand. Finally, the variables
of the severeness index and infected people population, which was
considered as the index of epidemic intensity, showed a moderate to a
significant impact on the oil and electricity demand [62]. This shows
that their direct impact is not as crucial as their indirect impacts shown
in the Fig. 3.

Furthermore, considering the timeliness of change between current
and future impact, the model forecasts two different scenarios for pet-
roleum and electricity demand in the coming months in China [63,64].
The first scenario is formulated based on the disease being controlled,
whereas, in the second scenario, the assumption is that the infection
cannot be controlled. Below, we elaborate on other assumptions of each
scenario as well as showing the results of both no Figs. 4 and 5.

Assumptions of the First Scenario

• The infected population growth is considered to be equal to
0.005%/week

• The FDI grows 2.5%/week.
• The Stocks return to the stability of the Pre-epidemic era
• Exports grow 4%/week

Assumptions of the Second Scenario:

• The infected population growth is considered to be equal to 2%/
week

• The FDI decreases by 1.2%/week.
• The Stocks stays instable
• Exports reduce 1%/week

To elaborate on the comparison between the method for each
model, Figs. 6 and 7 below shows the results of the regression model
compared to the ANN developed model. The error figures show that the
ANN model is lesser accurate comparing to the Regressive model. The
broader range of error in the ANN model shows that to predict the
short-time trend of petroleum and electricity demand in the term of
sudden issues and crisis such as current global pandemic of COVID-19.

Furthermore, the impacts on the sector can be evidenced in the
reduction of demand in the country, which is equivalent to the energy
of about 30 million tonnes of thermal coal or about nine million tonnes
of liquefied natural gas (LNG). China has sought to prevent the spread
of the viral epidemy that has killed more than 1400 and more than
60,000 people by extending the New Year's holidays for another week
(October 26, 2019, to January 7, 2020) and encouraging people to work
from home. Last year, industrial users consumed 4.85 trillion kWh,
accounting for 67% of the country's productivity [40]. Shizhou Zhou,
global head of energy and renewables at IHS, said if the epidemic
persists beyond March 2020, China's economic growth rate could drop
to 4.2% by 2020, from the company's initial forecast of 5.8% [64] (See
Fig. 8).
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While power consumption will only increase by 3.1 percent, com-
pared to the initial forecast of 4.1 percent, as Zhou noted, “the main
uncertainty is still under the speed of the virus spread,” the impact on the
electricity sector will be relatively moderate across the later parts of 2020
[64–67]. In Hubei province, the virus-carrying center, the peak load –
measuring power consumption – was 21 percent lower than planned by
the end of January, as shown by data from Wood Mackenzie Energy
Consulting [68]. Industrial productivity rates point to a significant de-
cline in electricity consumption in China. Plastic processors work be-
tween 30% and 60% of their full potential, and according to another
research study by ICIS China, the low level was expected to last until
April 2020 [31]. ICIS data showed that knitting machines work in textile
factories below ten percent capacity, the lowest in five years. China is the
world's largest exporter of textiles and clothing [49] (See Fig. 9).

According to people with domestic knowledge of the country's energy
industry, Chinese oil demand has fallen by about three million barrels a
day, or 20% of total consumption, as the coronavirus is pushing the
economy [21]. This fall is probably the most significant demand shock
the oil market has suffered since the global financial crisis of 2008–2009
and the most sudden since the September 11, 2001 disaster. This situa-
tion has already forced OPEC and its allies to cut production and reduce
prices to below zero in the time of pandemics [65].

The World Bank data shows that the coronavirus damaged the
Chinese economy severely in the last three months. Moreover, this
caused about 1000 billion USD damage to the overall economy (−1.7%
monthly Growth rate) [38] (See Fig. 10).

As was mentioned in the results sector, the energy demand in the oil
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and electricity sector of China is estimated for two scenarios. The re-
sults show that the coronavirus, if be controlled, the country will re-
cover to its former status quicker than it was predicted before in two
months, and the electricity and petroleum demand will experience a
minor peak by March–April 2020. However, if the coronavirus con-
tinues to spread, it will be more harmful to the energy and economy
sectors [19].

In order to model and build a realistic picture of the social-economic
impacts of the pandemic, we must address the environmental impacts
of the coronavirus breakout to have a comprehensive picture of the
situation [20]. To do so, we considered carbon emissions to model the
environmental impacts of the energic and economic aspects of the
pandemic. In the last one hundred years, five great falls of carbon
emissions have occurred. The first occurred in 1918–19 during the
Spanish flow pandemics. This event caused a 480 million tonnes re-
duction of CO2 emission, the second was WWII in 1944–45 with 850
million tonnes of CO2 reduction, next one in 1980–81 when the great
energy crisis occurred and caused 550 million tonnes of emission re-
duction, the fourth was during the recession and in 1991–92 more than
780 million tonnes of carbon emission reduced in this period. The fi-
nancial crisis of 2008–9 was the fifth great fall of emissions, in which
400 million tons of carbon emission reduced [22]. Experts consider that
the coronavirus pandemic can be the sixth and the greatest carbon fall

of the last century, with more than 2.2 billion tonnes of the reduction.
According to the findings of this paper, this prediction is an optimistic
view, but 1.8–2.0 billion tonnes is likely. However, it too early to
conclude that this pandemic has had either a negative or positive effect
on climate change and the environment. Considering the previous great
falls in the carbon emissions, it is a short time event, and almost always
after the end of the severeness, the emissions rapidly increase (revenge
emission) to even higher amounts than the pre-event levels [23]. But
even with these experiences, there are other factors that can affect the
emissions path, as the coronavirus outbreak in China was followed by
an oil shock, and, unlike the energy crisis of 1980–81, there are plenty
of current energy alternatives to diversify energy supply streams.
Considering the mentioned facts, the current structure of the global
energy economy is highly dependent on energy security and reliable
energy sources. Unlike the other similar situations, it is likely that the
petroleum demand and also carbon emissions do not increase to the
pre-corona virus outbreak's level, considering the dynamism of a glo-
balized world with additional collateral impacts. On the other hand, the
pandemic and the fall of the oil price may lean societies towards an
improved the renewable energy market, with the need for resiliency on
the sector and on the economy in general, similar to what happened in
Germany by the late 2019 and early 2020 [24]. This has also been
arguably evidenced by the early impacts of the coronavirus on renew-
able energy growth in power capacity, which has affected the sector but
no completely halt it although the analysis of the full effects of the
pandemic will require further data as the global situation continues to
progress [68,69].

5. Conclusion

Currently, the novel Coronavirus epidemic is still underway, pre-
venting a comprehensive study of its full impact. As Commissioner
Gentilonius pointed out on February 26, 2020, while China's weight
gain in the world economy since the outbreak of SARS in 2003 has
undoubtedly had an impact, it is too early to assess this and provide a
comprehensive study forecasts for China and its impacts on the other
regions like EU or Australia. However, given China's containment
measures and preventive measures taken by the rest of the world, the
first attempt has been made to estimate the likely impact on the
economy in the medium and long term. As noted, the first visible im-
pact on the health sector and the lack of capacity to deal with the
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volume of infections, which prompted officials to build other hospitals
in days. Another major impact includes reduction or closure of trans-
portation systems and social events, such as the Chinese New Year
(when much Chinese return home for the holidays), as well as con-
tainment measures around several Chinese cities.

The main contribution of this paper is in developing a method for
investigation of the periods that historical trends become inaccurate
and useless because of the described global crisis (i.e., pandemics,
economic collapses, etc.). As it was mentioned, trend shift phenomena
caused by the pandemic makes all of the models developed using the
historical trends useless and inaccurate. Thus, the long –term trend
analysis decreases the inaccuracy of the model, and short periods in-
crease the uncertainty of the model because of the smaller data sets for
model training and test process. For this season, the present method and
analysis can be used to help the researchers in the investigation of such
uncertain times. It is suggested that it may be for other global trend
shifts, not only exclusive to pandemics, such as economic crisis or peak-
oil phenomenon. Doing so would continue to further the literature and
impact of this field of study. Furthermore, the methods applied for this
study are developed using classical econometric models and, therefore,
can be used for investigating trend shifts, regardless of where such
shifts occur or what are its fundamental assumptions. Thus, there are no
regional and problem characteristic limitations for the trend-shift
analysis implementation in other cases.

Since the crisis is not ended yet, there is not complete data to study

the crisis comprehensively and investigate its full range and multi-di-
mensional impacts. However, there are recommendations from this
study can be summarized as:

1. According to the quarantine and shutting down of the industries, the
importance of electricity and eCommerce is highlighted, and busi-
nesses with more developed eCommerce infrastructures have shown
more resilience to the economic shock caused by the epidemic si-
tuation. Some suggestions can be made for the future of energy
portfolio and sustainable development of the countries considering
this fact [30,70]:
• Those Countries without developed electricity infrastructure and

internet communication are more vulnerable to the social and
economic aspects of the epidemic situations and should develop
their electricity and internet industries [31,71].

• The coronavirus situation has shown that renewable electricity
because of its decentralized nature is more suitable for the si-
tuation, which can be a reliable source during the worst chaotic
situations [29,72].

• The energy demand reduction during the coronavirus outbreak
has shown that the conventional electricity sources are not flex-
ible enough to manage the crisis without a significant fall in the
overall efficiency and imposing pressure on the distribution and
generation system [28,72,73].

• Also, renewable electricity because of its availability in most re-
gions is more reliable than fossil fuel, which in the case of a
problematic epidemic situation in the oil and gas producing
countries, may become unavailable or significant shortages occur
[31,74].

2. According to fall of oil price to the pre21st century level which
makes 10% of the global oil production infeasible for production
and refinement process, oil-producing countries should try to co-
operate in the crisis to control the energy market, thus the energy
security level of the consumers of their oil products to prevent more
significant economic harsh situations [32,73,75,76].
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Appendix A

See, Tables A1 and A2
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